Abstract

The sharp-interface limits of a phase-field model with a generalized Navier slip boundary condition for binary fluids with moving contact lines are studied by asymptotic analysis and numerical simulations. The effects of the mobility number as well as a phenomenological relaxation parameter on the boundary condition are considered. In asymptotic analysis, we consider both the cases that the mobility number is proportional to the Cahn number and the square of the Cahn number, and derive the sharp-interface limits for several set-ups of the boundary relaxation parameter. It is shown that the sharp-interface limit of the phase-field model is the standard two-phase incompressible Navier–Stokes equations coupled with several different slip boundary conditions. Numerical results are consistent with the analysis results and also illustrate the different convergence rates of the sharp-interface limits for different scalings of the two parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call