Abstract

By connecting the points which are the kind of linear combinations of Bézier control points, a broken line polygon called quasi-control polygon is produced. Using it to approximate Bézier segment, this paper obtains two sharp, quantitative bounds, besides depending on the degree of the polynomial, the bounds depend only on the maximal absolute second differences or the sum of absolute second differences of the control point sequence respectively. The advantage of this method is hardly increasing calculation, the effect of using quasi-control polygon to approximate is better than that of using control polygon to approximate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.