Abstract
We propose a method for the construction of a planar curve based on piecewise clothoids and straight lines that intuitively interpolates a given sequence of control points. Our method has several desirable properties that are not simultaneously fulfilled by previous approaches: Our interpolating curves are C2 continuous, their computation does not rely on global optimization and has local support, enabling fast evaluation for interactive modeling. Further, the sign of the curvature at control points is consistent with the control polygon; the curvature attains its extrema at control points and is monotone between consecutive control points of opposite curvature signs. In addition, we can ensure that the curve has self-intersections only when the control polygon also self-intersects between the same control points. For more fine-grained control, the user can specify the desired curvature and tangent values at certain control points, though it is not required by our method. Our local optimization can lead to discontinuity w.r.t. the locations of control points, although the problem is limited by its locality. We demonstrate the utility of our approach in generating various curves and provide a comparison with the state of the art.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.