Abstract
Abstract We prove that the area of a free boundary minimal surface $\Sigma ^2 \subset B^n$, where $B^n$ is a geodesic ball contained in a round hemisphere $\mathbb{S}^n_+$, is at least as big as that of a geodesic disk with the same radius as $B^n$; equality is attained only if $\Sigma $ coincides with such a disk. More generally, we prove analogous results for a class of conformally euclidean ambient spaces. This follows works of Brendle and Fraser–Schoen in the euclidean setting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.