Abstract
We derive linear isoperimetric inequalities for free boundary submanifolds in a geodesic ball of a Riemannian manifold in terms of the modified volume. It is known that the twice of the area of a free boundary minimal surface in a Euclidean unit ball is equal to the length of its boundary. This can be extended to space forms by using our linear isoperimetric inequalities for the modified volume. Moreover, we obtain a sharp lower bound for the modified volume of free boundary minimal surfaces in a geodesic ball of the upper hemisphere mathbb {S}_+^3. Finally, it is proved that the monotonicity property still holds for the modified volume of any submanifold in a complete simply connected Riemannian manifold with sectional curvature bounded above by a constant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.