Abstract
The excessive content of lead (Pb(II)) and Staphylococcus aureus (S.aureus) seriously harms the quality of aquatic products. In this paper, a highly sensitive electrochemiluminescence (ECL) biosensor was constructed using the synergistic effect of Au NPs@Nickel-Cobalt-Metal-organic frameworks (Au@Ni-Co-MOFs) and double potential resolution function of urchin-like Au@luminol and Cadmium sulfide quantum dots (CdS QDs) for synchronous detection of Pb(II) and S.aureus in aquatic products. Au@Ni-Co-MOFs as the base material, its cube structure can improve the surface active area and sensitivity of the sensor, providing more catalytic active sites for the two functional probes. Urchin-like Au@luminol binding aptamer DNA2 specifically recognizes Pb(II), CdS QDs binding aptamer DNA3 specifically recognizes S.aureus, which collaboratively catalyzed hydrogen peroxide reduction to produce two electrochemiluminescence signals. The shared hairpin structure DNA1 binds stably to Au@Ni-Co-MOFs via the Au-S bond, and the two functional probes are complementary paired with the DNA1 respectively to ensure the specificity of the aptamer. According to the ECL intensity changes of different potentials signal sources, the synchronous detection of Pb(II) and S.aureus with different concentrations is realized. The sensor realizes the detection of two targets in aquatic products and provides a new strategy for the simultaneous detection of multiple targets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.