Abstract

The synaptic pruning hypothesis posits that schizophrenia (SCZ) and autism spectrum disorder (ASD) may represent opposite ends of neurodevelopmental disorders: individuals with ASD exhibit an overabundance of synapses and connections while SCZ was characterized by excessive pruning of synapses and a reduction. Given the strong genetic predisposition of both disorders, we propose a shared genetic component, with certain loci having differential regulatory impacts. Genome-Wide single nucleotide polymorphism (SNP) data of European descent from SCZ (N cases = 53386, N controls = 77258) and ASD (N cases = 18381, N controls = 27969) were analyzed. We used genetic correlation, bivariate causal mixture model, conditional false discovery rate method, colocalization, Transcriptome-Wide Association Study (TWAS), and Phenome-Wide Association Study (PheWAS) to investigate the genetic overlap and gene expression pattern. We found a positive genetic correlation between SCZ and ASD (rg = .26, SE = 0.01, P = 7.87e-14), with 11 genomic loci jointly influencing both conditions (conjFDR <0.05). Functional analysis highlights a significant enrichment of shared genes during early to mid-fetal developmental stages. A notable genetic region on chromosome 17q21.31 (lead SNP rs2696609) showed strong evidence of colocalization (PP.H4.abf = 0.85). This SNP rs2696609 is linked to many imaging-derived brain phenotypes. TWAS indicated opposing gene expression patterns (primarily pseudogenes and long noncoding RNAs [lncRNAs]) for ASD and SCZ in the 17q21.31 region and some genes (LRRC37A4P, LINC02210, and DND1P1) exhibit considerable variation in the cerebellum across the lifespan. Our findings support a shared genetic basis for SCZ and ASD. A common genetic variant, rs2696609, located in the Chr17q21.31 locus, may exert differential risk regulation on SCZ and ASD by altering brain structure. Future studies should focus on the role of pseudogenes, lncRNAs, and cerebellum in synaptic pruning and neurodevelopmental disorders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call