Abstract
Barely visible impact damage (BVID) is inevitable during either fabrication or lifetime of a carbon fiber reinforced plastic (CFRP) component. These flaws are usually difficult to be detected from the surface by visual inspection or machine vision based on a charge-coupled device or CMOS. In order to solve the problems of low efficiency, low sensitivity, and small detection area of the existing nondestructive testing (NDT) for BVID in CFRP, this paper proposes for the first time the integrated nonlinear ultrasound (NU) and vibrothermography (VT) NDT based on the shared excitation sources. The experimental system was built after introducing the principle of shared excitation based NU&VT NDT. The CFRP plates with 5, 15, and 25 J visible impact damage (VID) as well as 12 and 16 J BVID were tested using the integrated NU&VT. Experimental studies after signal processing have shown that all VID and BVID could be detected by the integrated NU&VT NDT, and the defection capability has a significant improvement after fast Fourier transform. The proposed method could provide a visualized and effective means for quality control and inspection of large-scaled and complex shape key components in manufacturing process and in service.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.