Abstract
In teleoperation tasks, communication delays between master and slave sides negatively affect the stability and transparency of closed loop system, and make it difficult to maintain a desired contact force. In order to improve the performance of contact force control in teleoperation under large time delays, a shared compliant control method is proposed in this paper. On the master side, the operator issues a desired contact force command according to the feedback of the contact stiffness identified on line besides motion commands. And on the slave side, a local contact force controller is designed using an adaptive Smith predictor, so as to shares control load with the operator. Experimental results show that this method can improve the force control performance, lower the difficulty of operation, and help the operator complete contact tasks with proper forces.In teleoperation tasks, communication delays between master and slave sides negatively affect the stability and transparency of closed loop system, and make it difficult to maintain a desired contact force. In order to improve the performance of contact force control in teleoperation under large time delays, a shared compliant control method is proposed in this paper. On the master side, the operator issues a desired contact force command according to the feedback of the contact stiffness identified on line besides motion commands. And on the slave side, a local contact force controller is designed using an adaptive Smith predictor, so as to shares control load with the operator. Experimental results show that this method can improve the force control performance, lower the difficulty of operation, and help the operator complete contact tasks with proper forces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.