Abstract

Light-weight shared-aperture antennas require the integration of multiple functions in separate frequency bands within the same physical aperture, having great potential use in remote sensing, radiometers, telemetry and communication, etc. In this letter, a method for designing light-weight shared-aperture antennas based on engineering of spoof surface plasmon polaritons (SSPPs) is presented. The proposed antenna consists of a feeding patch and a SSPP structure. Even and odd modes can be excited in different bands to realize different radiation performances. The simulated and measured results both corroborate that the presented shared-aperture antenna can achieveomnidirectional radiation at around 3.1 GHz and end-fire radiation at around 10.65 GHz, with peak gains about 1.90 dB and 6.24 dB, respectively. Without using several radiators and complex feeding networks, the antenna can work in two bands with different radiation patterns. This work provides an effective alternative design for shared-aperture antennas in light-weight and multi-functional wireless communication systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.