Abstract

Code-switching entails mixing multiple languages. It is an increasingly occurring phenomenon in social media texts. Usually, code-mixed texts are written in a single script, even though the languages involved have different scripts. Pre-trained multilingual models primarily utilize the data in the native script of the language. In existing studies, the code-switched texts are utilized as they are. However, using the native script for each language can generate better representations of the text owing to the pre-trained knowledge. Therefore, a cross-language-script knowledge sharing architecture utilizing the cross attention and alignment of the representations of text in individual language scripts was proposed in this study. Experimental results on two different datasets containing Nepali-English and Hindi-English code-switched texts, demonstrate the effectiveness of the proposed method. The interpretation of the model using model explainability technique illustrates the sharing of language-specific knowledge between language-specific representations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.