Abstract

To realize band structures with non-trivial topological properties in an optical lattice is an exciting topic in current studies on ultra cold atoms. Here we point out that this lofty goal can be achieved by using a simple scheme of shaking an optical lattice, which is directly applicable in current experiments. The photon-assistant band hybridization leads to the production of an effective spin-orbit coupling, in which the band index represents the pseudospin. When this spin-orbit coupling has finite strengths along multiple directions, non-trivial topological structures emerge in the Brillouin zone, such as topological defects with a winding number 1 or 2 in a shaken square lattice. The shaken lattice also allows one to study the transition between two band structures with distinct topological properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call