Abstract

The inverse finite element method (IFEM), which is used to reconstruct the displacement field from the discrete surface strain measurements, is of great significance to the management, control and driving of smart structures. However, the iFEM method based on constant cross-section beam elements proposed in previous works were no longer suitable for variable cross-section beam elements. To solve this problem, this paper proposes a new iFEM method for reconstructing the displacement field of variable cross-section beam based on isogeometric analysis. Firstly, the mechanical parameters of beam section are linearized, including section area, axial rigidity, shear rigidity, torsional rigidity and bending rigidity, and a new constitutive relations are established. Then, adhering to the constitutive equations and the small-strain hypothesis, the displacement equations of the theoretical deformation field are deduced. Nevertheless, considering that the deduced displacement equations can not be applied to the iFEM, this paper proposes a method for using isogeometric analysis instead of the original function, and the least-square method is used to establish the strain-displacement relation. Finally, to verify the validity and accuracy of the methodology, a concentrated load and a distributed load were applied to one airfoil in the experiment tests. The predicted displacements with previous iFEM and presented iFEM are compared with those experimentally measured values, respectively. The results show that the presented iFEM exhibited higher accuracy than the previous iFEM in the variable cross-section beam problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.