Abstract
Fully automatic lumen segmentation in intravascular optical coherence tomography (OCT) images can assist physicians in quickly estimating the health status of vessels. However, OCT images are usually degraded by residual blood, catheter walls, guide wire artifacts, etc., which significantly reduce the quality of segmentation. To achieve accurate lumen segmentation in low-quality images, we propose a novel segmentation algorithm named SPACIAL: Shape Prior generation and geodesic Active Contour Interactive iterAting aLgorithm, which is guided by an adaptively generated shapeprior. In this framework, the active contour evolves under the guidance of shape prior, while the shape prior is automatically and adaptively generated based on the active contour. The active contour and the shape prior interactively iterate each other, which can generate the adaptive shape prior and consequently lead to accurate segmentation results. In addition, a fast algorithm is introduced to accelerate the segmentation in 3Dimages. The validity of the model is verified in 3240 images from 12 OCT pullbacks. The experimental results show satisfactory segmentation accuracy and time efficiency: the average Dice coefficient of SPACIAL is 93.6(2.4)%, and 5.7 times faster than that of the classical level setmethod. The proposed SPACIAL can quickly and efficiently perform accurate lumen segmentation on low quality OCT images, which is of great importance to cardiovascular disease diagnosis . The SPACIAL method shows great potential in clinicalapplications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have