Abstract

The exterior Bernoulli free boundary problem is considered and reformulated into a shape optimization setting wherein the Neumann data is being tracked. The shape differentiability of the cost functional associated with the formulation is studied, and the expression for its shape derivative is established through a Lagrangian formulation coupled with the velocity method. Also, it is illustrated how the computed shape derivative can be combined with the modified $H^1$ gradient method to obtain an efficient algorithm for the numerical solution of the shape optimization problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.