Abstract

AbstractTowards the goal of developing renewable, biocompatible and intelligent polymer materials, natural Eucommia ulmoides gum (EUG) was modified via epoxidation and then the epoxidized EUG (EEUG) was compounded with another sustainable and biobased polymer, polylactic acid (PLA), to develop shape memory thermoplastic vulcanizates (TPVs) through reactive blending. The prepared PLA/EEUG TPVs displayed not only enhanced toughness but also greatly improved shape recovery ability, which was generated from the co‐continuous phase structure and excellent interfacial adhesion induced by in situ compatibilization during reactive blending. It is shown that dicumyl peroxide content exerted little influence on the toughness of the TPVs. However, heat‐triggered shape memory effects of the TPVs were significantly affected by the dicumyl peroxide content with a decrease in deformation ratio (Δε) from 163.51% to 128.36% and an increase in shape recovery ratio (Rr) from 73.32% to 91.93%. The findings of the present study offer an idea for the industrialization of biocompatible and smart materials for biomedical applications. © 2024 Society of Industrial Chemistry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call