Abstract

In this study, we report on a shape-imposed magnetic anisotropy in micro- and nanostructures defined in antiferromagnetic (AF) LaFeO3 (LFO) thin films. Two distinct types of structures are investigated: embedded magnets created via ion implantation and free-standing magnets created via ion milling. Using a combination of x-ray photoemission electron microscopy and x-ray absorption spectroscopy, we examine the impact of the structure type, AF layer thickness, and crystal geometry on the Néel vector orientation in these structures. We demonstrate a distinct shape-imposed anisotropy in embedded and free-standing structures alike and show that both parallel and perpendicular alignments of the AF spin axis with respect to structure edges can be achieved by variation of the AF layer thickness and the orientation of the structure edges with respect to the LFO crystalline axes. This work demonstrates how the fabrication procedure affects the magnetic order in thin film AF nanostructures and shows how nanoscale patterning can be used to control the orientation of the Néel vector in epitaxial oxide thin films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call