Abstract

We propose a unified 3D flow framework for joint learning of shape embedding and deformation for different categories. Our goal is to recover shapes from imperfect point clouds by fitting the best shape template in a shape repository after deformation. Accordingly, we learn a shape embedding for template retrieval and a flow-based network for robust deformation. We note that the deformation flow can be quite different for different shape categories. Therefore, we introduce a novel multi-hub module to learn multiple modes of deformation to incorporate such variation, providing a network which can handle a wide range of objects from different categories. The shape embedding is designed to retrieve the best-fit template as the nearest neighbor in a latent space. We replace the standard fully connected layer with a tiny structure in the embedding that significantly reduces network complexity and further improves deformation quality. Experiments show the superiority of our method to existing state-of-the-art methods via qualitative and quantitative comparisons. Finally, our method provides efficient and flexible deformation that can further be used for novel shape design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call