Abstract
We propose a unified 3D flow framework for joint learning of shape embedding and deformation for different categories. Our goal is to recover shapes from imperfect point clouds by fitting the best shape template in a shape repository after deformation. Accordingly, we learn a shape embedding for template retrieval and a flow-based network for robust deformation. We note that the deformation flow can be quite different for different shape categories. Therefore, we introduce a novel multi-hub module to learn multiple modes of deformation to incorporate such variation, providing a network which can handle a wide range of objects from different categories. The shape embedding is designed to retrieve the best-fit template as the nearest neighbor in a latent space. We replace the standard fully connected layer with a tiny structure in the embedding that significantly reduces network complexity and further improves deformation quality. Experiments show the superiority of our method to existing state-of-the-art methods via qualitative and quantitative comparisons. Finally, our method provides efficient and flexible deformation that can further be used for novel shape design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.