Abstract
In a modified reflexive spatial attention paradigm, when the cue and the target are at the same spatial location, processing of the target is faster when the cue and the target have different shapes compared to same (shape effect). Recent physiological findings suggest distinct population level encoding of shape in ventral versus dorsal cortical visual streams in monkeys. In human observers, we tested whether the effect of shape on reflexive spatial attention could be attributed to ventral and/or dorsal stream encoding of shape. In the modified reflexive spatial attention paradigm, we varied the shapes of the cue and target. Based on data from monkey physiology (Lehky & Sereno, 2007), we selected four pairs of cue and target shapes. In some pairs, cue and target were similarly encoded (similar encoding distance) by a population of cells in the lateral intraparietal cortex, a dorsal stream area, but more dissimilarly encoded (having a greater encoding distance) by a population of cells in the anterior inferotemporal cortex (AIT), a ventral stream area. In other pairs, cue and target were similarly encoded in AIT and had greater dissimilarity in LIP encoding. We found that pairs of cue and target with greater dissimilarity in LIP encoding produced larger and more consistent shape effects up to a cue to target onset asynchrony (CTOA) of 450ms. The shape effects for cue and target pairs with greater dissimilarity in AIT encoding were smaller and inconsistent, suggesting that shape effects in reflexive spatial attention are largely driven by the dorsal stream.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have