Abstract

Magnetohydrodynamic (MHD) mixed convection channel flow of Molybdenum disulphide (MoS2) nanofluid inside vertical porous medium is investigated. Molybdenum disulphide nanoparticles are used in water as based fluid. Fluid slips at the lower wall of the channel. Molybdenum disulphide as solid nanoparticles is used in different shapes such as platelet, blade, cylinder, brick and spherical. The governing equations are modeled and then solved analytically using perturbation technique. Approximate solutions are obtained for velocity and temperature profiles. Graphical results are obtained through a computational software Mathcad and discussed for various embedded parameters. A comparative study for different shapes of molybdenum disulphide nanoparticles is provided graphically. It is found that MoS2 nanoparticles with blade and platelet shapes have shown the highest heat transfer rate compared to cylinder and brick shapes. Porosity and magnetic parameters have shown opposite effects on velocity, whereas velocity has shown increase with increasing slip.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call