Abstract

Proper recognition of complex-shaped handwritten compound characters is still a big challenge for Bangla OCR systems. In this paper, we propose a novel shape decomposition-based segmentation technique to decompose the compound characters into prominent shape components. This shape decomposition reduces the classification complexity in terms of less number of classes to recognize, and at the same time improves the recognition accuracy. The decomposition is done at the segmentation area where the two basic shapes are joined to form a compound character. We use chain code histogram feature set with multi-layer perceptron (MLP) based classifier with backpropagation learning for classification. On experimentation, the proposed method is observed to provide good recognition accuracy comparing with other existing methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.