Abstract

The antibacterial activity of zinc oxide (ZnO) nanoflowers has been investigated and presented in this article. Classic three-dimensional nanoflowers have been prepared by hydrothermal method using zinc acetate dihydrate Zn(CH3COO)2·2H2O as the sole precursor. The X-ray diffraction and Fourier transform infrared spectra confirm the formation of ZnO crystals. Consequently, on the basis of morphological and chemical observations, the chemical reaction mechanism of ZnO nanoflowers was also proposed. Antibacterial activity was carried out against food-borne pathogen, Escherichia coli, which is ubiquitous in distribution among food-laden wastes. The experimental procedures for the antibacterial test included a spectroscopic method with different concentrations (5-20 μg/mL) of ZnO nanoflowers to unearth the minimum inhibitory concentration. Our investigation suggests that the lowest concentration of ZnO nanoflower solution that can hamper the growth of this microbial strain was 5 μg/mL.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call