Abstract

The traditional concept of the synthesis of semiconductor nanocrystals (NCs) by solvent routes usually performed under high temperatures, causes the semiconductor materials to nucleate and grow into various shaped NCs in solution. Therefore, these methods are named as “solvent-thermal approachs”. In this work, we describe a simple and reproducible strategy for the synthesis of PbS NCs at temperatures even as low as −20 °C by using frozen and solidified precursors. With the aid of alkylamines, nano-sized PbS could also nucleate and grow at such low temperatures within a short time (a few seconds). The experimental results not only break people's traditional thinking but also provide a significant and novel direction in the engineering of the synthesis of NCs. In addition, we further systematically investigated the effect of two types of temperatures (the mixing temperature of the precursors and the ripening temperature of the PbS NCs). Combining this with different alkylamines, we found an obvious competition between a growth kinetic process caused by the alkylamines and a thermodynamic process induced by the temperature, which formed variously shaped monodispersed PbS NCs, including flower-, star-, sphere-, truncated octahedron-, cuboctahedron-, quasi cube-, cube-shaped and some hollow PbS NCs. Furthermore, this competition process could also provide a facile and cost-effective route to synthesize size-tunable but shape-permanent PbS NCs and their self-assembly superlattices in the same reaction systems, which is still a major challenge at present. Afterward, both the formation mechanisms of the PbS nanostructures synthesized below room temperature and the shape transformation depending on two types of temperature and alkylamines are systematically discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call