Abstract

Self-assembly of two sizes of nearly spherical colloidal nanocrystals (NCs) capped with hydrocarbon surface ligands has been shown to produce more than 20 distinct phases of binary nanocrystal superlattices (BNSLs). Such structural diversity, in striking contrast to binary systems of micron-sized colloidal beads, cannot be rationalized by models assuming entropy-driven crystallization of simple spheres. In this work, we show that the PbS ligandbinding equilibrium controls the relative stability of two closely related BNSL structures featuring alternating layers of PbS and Au NCs. At an intermediate size ratio, as-prepared PbS NCs assemble with Au NCs into CuAu BNSLs featuring orientational coherence of PbS NCs across the lattice. Measurement of interparticle separations within CuAu and modeling of the structure reveal that PbS inorganic cores are nearly in contact through (100) NC surfaces in the square tiling of the CuAu basal plane. On the other hand, AlB2 BNSLs with PbS NCs packed in random orientations were found to be the dominant self-assembly product when the same binary NC solution was evaporated in the presence of added oleic acid (OAH). Solution nuclear magnetic resonance titration experiments confirmed that added OAH binds to PbS NCs, implicating ligand surface coverage as an important factor influencing the relative stability of CuAu and AlB2 BNSLs at the experimental size ratio. From these results, we conclude that as-prepared PbS NCs feature sparsely covered (100) surfaces and thus effectively flat patches along NC x-, y-, and z-directions. Such anisotropic PbS-PbS interactions can be efficiently screened by restoring effectively spherical NC shape via addition of OAH to the binary assembly solution. Our findings underscore the important contribution of NC surfaces to superlattice phase stability and offer a strategy for targeted BNSL assembly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call