Abstract

The shape controlled growth of diamond is beneficial to its subsequent processing. The shape controlled growth for abrasive grade diamond, whose particle size is less than 1 mm, has been studied extensively, while the shape controlled growth of large diamond crystals, which have important commercial and scientific applications, has not been investigated in detail. Therefore, it is necessary to do further researches. In this study, we synthesize large type Ib diamond crystals and investigate their growth shapes at pressures of 5.3-5.9 GPa and temperatures of 1200-1370℃, by using Fe64Ni36 alloy as the catalyst and (100) or (111) face of seed as growth face. Experimental results show that for the diamond crystals grown along the (100) face, the crystal shapes presents plate shape at 1206-1215℃, tower shape at 1216-1260℃, and tower steeple shape at 1261-1360℃; in sequence while for those grown along the (111) face, the crystal shape is of tower at 1233-1238℃ and becomes plate at 1239-1364℃. The ratio of height to diameter, which can provide a standard to quantify the shape of a diamond, is used to describe the crystal shape in detail. For large diamond crystals growing along the (100) face, under a high pressure of 5.6 GPa, the ratio of height to diameter increases with temperature increasing but the ratio of height to diameter, when growing along the (111) face, decreases. The shape distributions of large diamond crystals in the V-shaped region can be determined in the experiments of large diamond crystal synthesis at different temperatures (1200-1370℃) and pressures (5.3 GPa, 5.6 GPa, 5.9 GPa). The lower limit temperature of large diamond crystal growing along the (111) face in the V-shape region is obviously higher than that growing along the (100) face, but the difference between the higher limit temperatures for growing along these two faces is not obvious. The difference between the lower temperature limits of large diamond crystals growing along the (100) and (111) face can be explained by the different energies of the crystal surface and diamond/graphite equilibrium line in the phase diagram of carbon/alloy. Therefore, it has been realized that the shapes for type Ib large diamond crystals are controlled.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.