Abstract

Lpd (lipoamide dehydrogenase) in Mycobacterium tuberculosis (Mtb) is required for virulence and is a genetically validated tuberculosis (TB) target. Numerous screens have been performed over the last decade, yet only two inhibitor series have been identified. Recent advances in large-scale virtual screening methods combined with make-on-demand compound libraries have shown the potential for finding novel hits. In this study, the Enamine REAL library consisting of ∼1.12 billion compounds was efficiently screened using the GPU Shape screen method against Mtb Lpd to find additional chemical matter that would expand on the known sulfonamide inhibitor series. We identified six new inhibitors with IC50 in the range of 5-100 μM. While these compounds remained chemically close to the already known sulfonamide series inhibitors, some diversity was found in the cores of the hits. The two most potent hits were further validated by one-step potency optimization to submicromolar levels. The co-crystal structure of optimized analogue TDI-13537 provided new insights into the potency determinants of the series.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.