Abstract

We present a new method for the numerical treatment of second order phase transitions using the level spacing distribution function $P(s)$. We show that the quantities introduced originally for the shape analysis of eigenvectors can be properly applied for the description of the eigenvalues as well. The position of the metal--insulator transition (MIT) of the three dimensional Anderson model and the critical exponent are evaluated. The shape analysis of $P(s)$ obtained numerically shows that near the MIT $P(s)$ is clearly different from both the Brody distribution and from Izrailev's formula, and the best description is of the form $P(s)=c_1\,s\exp(-c_2\,s^{1+\beta})$, with $\beta\approx 0.2$. This is in good agreement with recent analytical results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call