Abstract

Numerical studies of the Anderson transition are based on the finite-size scaling analysis of the smallest positive Lyapunov exponent. We prove numerically that the same scaling holds also for higher Lyapunov exponents. This scaling supports the hypothesis of the one-parameter scaling of the conductance distribution. From the collected numerical data for quasi one dimensional systems up to the system size 24 x 24 x infinity we found the critical disorder 16.50 < Wc < 16.53 and the critical exponent 1.50 < \nu < 1.54. Finite-size effects and the role of irrelevant scaling parameters are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.