Abstract

In this paper we propose a new method for shape analysis based on the ordering of shapes using band-depth. We use this band-depth to non-parametrically define a global depth for a shape with respect to a reference population, typically consisting of normal control subjects. This allows us to globally quantify differences with respect to "normality". Using the depth-ordering of shapes also allows the detection of localized shape differences by using α-central values of shapes. We propose permutation tests to statistically assess global and local shape differences. We further determine the directionality of shape differences (local inflation versus deflation). The method is evaluated on a synthetically generated striatum dataset, and applied to detect shape differences in the hippocampus between subjects with first-episode schizophrenia and normal controls.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.