Abstract

In this paper we investigate the ability of Shallow Neural Networks i.e. neural networks with one hidden layer, to solve Laplace’s equation on the half space. We are interested in answering the question if it is possible to fit the boundary value using a neural network then is it possible to learn the solution to the PDE in the entire region using the same network? Our analysis is done primarily in Barron Spaces, which are function spaces designed to include neural networks with a single hidden layer and infinite width. Our results indicate in general the solution is not in the Barron space even if the boundary values are. However, the solution can be approximated to ∼ ε^2 accuracy with functions of a low Barron norm. We implement a Physics Informed Neural Network with a custom loss function todemonstrate some of the theoretical results shown before.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.