Abstract

Shallow ground-source heat pumps (GSHPs) are a promising technology for contributing to the decarbonisation of the energy sector. In heating-dominated climates, the combined use of GSHPs for both heating and cooling increases their technical potential, defined as the maximum energy that can be exchanged with the ground, as the re-injection of excess heat from space cooling leads to a seasonal regeneration of the ground. This paper proposes a new approach to quantify the technical potential of GSHPs, accounting for effects of seasonal regeneration, and to estimate the useful energy to supply building energy demands at regional scale. The useful energy is obtained for direct heat exchange and for district heating and cooling (DHC) under several scenarios for climate change and market penetration levels of cooling systems. The case study in western Switzerland suggests that seasonal regeneration allows for annual maximum heat extraction densities above 300 kWh/m2 at heat injection densities above 330 kWh/m2. Results also show that GSHPs may cover up to 63% of cooling and 55% of heating demand for individual GSHPs in 2050 in Switzerland, which increases to 87% and 85% if DHC is used. The regional-scale results may serve to inform decision making on strategic areas for installing GSHPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.