Abstract
The effect of poroelastic properties of the shale matrix on gas storage and transport mechanisms has gained significant attention, especially during history-matching and hydrocarbon production forecasting in unconventional reservoirs. The common oil and gas industry practice in unconventional reservoir simulation is the extension of conventional reservoir simulation that ignores the dynamic behavior of matrix porosity and permeability as a function of reservoir effective net stress. This approach ignores the significant impact of the poroelastic characteristics of the shale matrix on hydrocarbon production. The poroelastic characteristics of the shale matrix highly relate to the shale matrix geomechanical properties, such as the Young’s Modulus, Poisson’s ratio, bulk modulus, sorption behavior, total organic content (TOC), mineralogy and presence of natural fractures in the multi-scale shale structure. In this study, in order to quantify the effect of the poroelasticity of the shale matrix on gas production, a multi-continuum approach was employed in which the shale matrix was divided into organic materials, inorganic materials and natural fractures. The governing equations for gas transport and storage in shale were developed from the basic fundamentals of mass and momentum conservation equations. In this case, gas transport in organics was assumed to be diffusive, while gas transport in inorganics was governed by convection. Finally, a fracture system was added to the multi-scale shale gas matrix, and the poroelastic effect of the shale matrix on transport and storage was investigated. A modified Palmer and Mansoori model (1998) was used to include the pore compression, matrix swelling/shrinkage and desorption-induced deformation of shale organic matter on the overall pore compressibility of the shale matrix. For the inorganic part of the matrix, relations between rock mechanical properties and the pore compressibility were obtained. A dual Langmuir–Henry isotherm was also used to describe the sorption behavior of shale organic materials. The coupled governing equations of gas storage and transport in the shale matrix were then solved using the implicit finite difference approach using MATLAB. For this purpose, rock and fluid properties were obtained using actual well logging and core analysis of the Marcellus gas well. The results showed the importance of the poroelastic effect on the pressure response and rate of gas recovery from the shale matrix. The effect was found to be mainly due to desorption-induced matrix deformation at an early stage. Coupling the shale matrix gas production including the poroelastic effect in history-matching the gas production from unconventional reservoirs will significantly improve engineering completion design optimization of the unconventional reservoirs by providing more accurate and robust production forecasts for each hydraulic fracture stage.
Highlights
As a more result,attention more attention has paid this to source of energy and ways toways optimize the gas production in a muchincheaper, beentopaid this source of energy and to optimize the gas production a much safer and cleaner manner
Recent studies have shown significant economic impact wells drilled in shale gas reservoirs
We developed a multi-continuum model to account for such and investhis study, we developed a multi-continuum model to account for properties such properties and investigated impact on gas transport storage in the shale matrix employedin tigated theirtheir impact on gas transport andand storage in the shale matrix to to bebe employed in engineering completion design optimization
Summary
The main of the investigation to achieve the and drawdown the long horizontal wells drilled thiscompletion goal is thedesign completion design andoptimization drawdown of optimization of the long horizontal in shale gas reservoirs [2,3,4]. Recent studies have shown significant economic impact wells drilled in shale gas reservoirs [2,3,4]. Recent studiesthe have shown the significant ecoof completion design efficiency on both short-and long-term hydrocarbon production nomic impact of completion design efficiency on both short-and long-term hydrocarbon from these unconventional reservoirs [5]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.