Abstract
The hydrocarbon storage and transport capacity of shale reservoirs are dependent on its complex pore systems. This study focuses on Ordovician Goldwyer Formation (Goldwyer shale) from Canning Basin, Western Australia. Multi-scale qualitative (X-ray diffraction, field emission scanning electron microscope, TESCAN integrated mineral analyser (TIMA) and thin-section analysis) and quantitative (Rock-Eval® pyrolysis, helium porosity on crushed samples, low-pressure gas adsorptions (N2 and CO2) and mercury injection capillary pressure (MICP)) approaches were applied on shale samples. The results indicate that the Goldwyer shale comprises five main lithofacies (namely organic-rich shale, argillaceous shale, siliceous shale, calcareous shale, and mixed shale) based on mineral composition and total organic carbon (TOC) content. The organic-rich and siliceous shales have highest porosity (>10%) followed by mixed shale and other lithofacies. Three types of pores, namely organic pores, interparticle, and intraparticle pores, are identified in Goldwyer shale. Most of the pores are narrow slit-like or bottle-necked shaped pores. The micropore and mesopore volumes and specific surface area (SSA) of all lithofacies are positively related to TOC except for the argillaceous shale. Conversely, the micro and mesopore parameters (SSA and pore volumes) exhibited inverse relations with total clay content for all lithofacies except argillaceous shale. This indicates that the total clay and TOC content is the main controlling factors for pore structure of Goldwyer shale. The whole pore aperture exposed that mesopores are more abundant in Goldwyer shale; however, few micro and macropores are also found in different lithofacies. The organic-rich, siliceous and mixed shales could be deemed as the most essential lithofacies types for fluid flow via pore systems due to high porosity and feasible pore structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.