Abstract
A 4-tower high-rise building connected with an isolated sky corridor on the top is designed in the seismic region of China. The 300-meter long sky-corridor bridges the four 230-m-high towers at the top floor. The seismic design of the building is challenging due to the structural complexity. Passive control strategy is employed to reduce earthquake responses and member forces of the towers and the sky corridor. Connections between the towers and the sky corridor are designed as flexible links. Curved surface sliders (CSSs) and viscous dampers (VDs) are installed at the connection joints. The characteristics of the seismic isolation system should remain unchanged during the service life, and the CSSs shall be protected strictly from humidity and dust. To study the seismic performance of the 4-tower connected structure, a 1/25 scale model is tested by shaking table tests subject to minor, moderate, and major earthquake. According to the Chinese code, peak ground accelerations subject to the 3 levels are specified as 0.025, 0.07, and 0.175 g. Eight earthquake records with different frequency spectrum properties were selected to test the model structure. Detailed dynamic similitude design of towers, CSSs, and VDs are described. The maximum acceleration and deformation responses of the towers and the sky corridor are measured, as well as the seismic performance of the CSSs and VDs, the dynamic characteristics, and the cracking pattern of the building. Results show that no serious damage occurs on the 4-tower connected structure. The protective system that consists of the CSSs and VDs reduces the seismic responses of the sky corridor. The sky corridor keep in elastic state under the high-intensity earthquake.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have