Abstract

In this paper, a numerical method based on shakedown theory has been developed to calculate shakedown load limits of flexible pavements under moving surface loads. The shakedown results can serve as a design basis for flexible road pavements for the prevention of excessive plastic deformation. This numerical method utilises elastic stress fields obtained from finite element analyses and calculates optimum shakedown multiplier for each pavement layer by means of a self-equilibrated critical residual stress field. Finally, the shakedown load limit of a flexible pavement is found as the minimum shakedown multiplier among all layers. The results of numerical analyses examine the effect of surface frictional coefficient, material properties and layer thicknesses on the shakedown load limits, and meanwhile provide an insight into the differences between two-dimensional and three-dimensional pavement models. A simple design procedure using the shakedown method is also developed for layered, flexible road pavements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.