Abstract

The P5-ATPases are important components of eukaryotic cells. They have been shown to influence protein biogenesis, folding, and transport. The knowledge of their biochemical properties is, however, limited, and the transported ions are still unknown. We expressed in Saccharomyces cerevisiae the yeast Spf1 P5A-ATPase containing the GFP fused at the N-terminal end. The GFP-Spf1 protein was localized in the yeast endoplasmic reticulum. Purified preparations of GFP-Spf1 hydrolyzed ATP at a rate of ~0.3-1 μmol of P(i)/mg/min and formed a phosphoenzyme in a simple reaction medium containing no added metal ions except Mg(2+). No significant differences were found between the ATPase activity of GFP-Spf1 and recombinant Spf1. Omission of protease inhibitors from the purification buffers resulted in a high level of endogenous proteolysis at the C-terminal portion of the GFP-Spf1 molecule that abolished phosphoenzyme formation. The Mg(2+) dependence of the GFP-Spf1 ATPase was similar to that of other P-ATPases where Mg(2+) acts as a cofactor. The addition of Mn(2+) to the reaction medium decreased the ATPase activity. The enzyme manifested optimal activity at a near neutral pH. When chased by the addition of cold ATP, 90% of the phosphoenzyme remained stable after 5 s. In contrast, the phosphoenzyme rapidly decayed to less than 20% when chased for 3 s by the addition of ADP. The greater effect of ADP accelerating the disappearance of EP suggests that GFP-Spf1 accumulated the E1~P phosphoenzyme. This behavior may reflect a limiting countertransported substrate needed to promote turnover or a missing regulatory factor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.