Abstract

Despite many years of research, there is still a lack of consensus as to the nature of the relationship between shade trees and agronomic intensification in coffee agroforestry systems. While some studies find unshaded intensively managed coffee is the most productive, other studies find no trade-off between shade characteristics and productivity. Our study of 179 farms from the main coffee growing regions of Costa Rica and Guatemala analyzed how shade affected the productive response of coffee to intensification of agronomic management. Four levels of coffee productivity were differentiated for each country associated with three levels of shade development in Costa Rica and two levels in Guatemala. The highest coffee productivity group was associated with medium shade development in both countries. High shade groups had low productivity, but very low productivity groups were associated with low (Costa Rica) or medium (Guatemala) shade. Medium and high productivity farms were associated with high elevation, lower rainfall and regions with higher coffee prices. Yields with a moderate level of investment (720–1,500 USD−1) and with medium shade (LAI 0.55-1.1) were not significantly different from yields with higher investment or lower shade levels. The increase in yields with increasing N fertilizer application were similar under low, medium and high LAI, but the mean productivity significantly lower with high LAI. Agronomic intensification to increase productivity is equally effective for low and medium shade systems (LAI <1.1); low productivity farms may have high shade or low shade but are mainly limited by low investment. Intensification of production is compatible with medium shade levels that should deliver broader ecosystem services but achieving this depends on coffee prices enabling this investment.

Highlights

  • There has been on-going concern that the intensification of coffee production to meet growing global demand and generate income for producing countries, has led to the replacement of traditional coffee agroforestry systems that use a diversity of shade trees with unshaded or simplified shade coffee production (Jha et al, 2014)

  • The high productivity typology was associated with medium leaf area index (LAI) shade (Hp-Ms), while medium productivity typologies were associated with low (Mp-Ls) or medium (Mp-Ms) LAI shade in Costa Rica and Guatemala, respectively

  • The low productivity typologies were associated with high LAI shade (Lp-Hs) in both countries, but the very low productivity typologies were associated with low (VLp-Ls) or medium shade (VLp-Ms) in Costa Rica and Guatemala, respectively

Read more

Summary

Introduction

There has been on-going concern that the intensification of coffee production to meet growing global demand and generate income for producing countries, has led to the replacement of traditional coffee agroforestry systems that use a diversity of shade trees with unshaded or simplified shade coffee production (Jha et al, 2014). Coffee production has been at the vanguard of promoting sustainability with ∼35% of global production compliant with one of the private sustainability standards (Lernoud et al, 2018) While these standards promote shaded coffee production (i.e., the producer gains points for the use of shade and in most cases more points for a more diverse shade), none require them. Coffee agroforestry systems provide many other products (timber, fuelwood, other fruits) that can generate further economic benefits (Rice, 2008; Vaast et al, 2015)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call