Abstract

Cellulose derivatives having a cross-linkable mercapto group were prepared by esterification of cellulose acetate (CA) with mercaptoacetic acid. The molecular structure of a series of products (CA-MA) was characterized by (1)H and (1)H- (13)C HMQC NMR spectroscopy and gel permeation chromatography. The solubility of CA-MA in water and organic solvents could be controlled by changing the preparation conditions including the degree of acetyl substitution of the starting CA. The CA-MA samples thus synthesized showed a sol-gel transition in solution and a shape memory-recovery behavior in film form through adequate redox treatments due to the reversible, cross-linking association and dissociation between mercapto groups. Dimethyl sulfoxide was usable as the organic solvent and oxidant, while the major reducing reagent was 2-mercaptoethanol or ammonium mercaptoacetic acid. The progress of the redox reactions was followed by using a confocal depth scanning technique in Raman spectroscopy. It was found that the compatibility between the cellulose derivatives and the redox reagents used was an important factor for the successful reactions, especially in the samples of film form. The cross-linking effect on the thermal and viscoelastic properties of the CA-MA films was also estimated by differential scanning calorimetry and dynamic mechanical analysis. Discussion focused on the alternately declining and recovering behavior of a principal loss tan delta peak, observed following the redox treatments repeated for the CA-MA film specimens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.