Abstract

Pullulan acetate (AcPL) with various degree of substitution (DS: 1.0–3.0) was synthesized by the reaction of pullulan with acetyl chloride in the presence of pyridine. The product was characterized by gel permeation chromatography (GPC), infra-red (IR) and 1H NMR spectroscopy. The weight average molecular weights of the products did not decrease less than 190,000 (GPC) in the acetylation reaction. Thermogravimetric analysis (TGA) revealed that AcPL has a higher decomposition temperature (306–363 °C) than unmodified pullulan (295 °C). Differential scanning calorimetry analysis (DSC) revealed that all the AcPLs exhibit a clear T g, which decreased with increasing DS value in the range of DS 1.0–2.4. The AcPL with DS 2.4 showed the lowest T g (153 °C), and the AcPL with DS 3.0 had a slightly higher T g (163 °C). Tensile modulus of AcPL films was comparable to that of a popular cellulose acetate film. The biodegration rate of AcPL decreased with increasing degree of acetylation. The AcPL with DS 3.0 was found to form a semi-clear gel in organic solvents such as dimethyl sulfoxide (DMSO), N, N-dimethylformamide (DMF), and 1,4-dioxane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.