Abstract
Sodium-dependent glucose transporter (SGLT2) inhibitors (SGLT2i) have been found to have anti-atherosclerotic effects in clinical treatment. The aim of this study was to explore whether angiotensin II (Ang II) induces changes in the expression of Na+/H+ exchanger of cytoplasmic membrane channel proteins (NHE1) and SGLT2 in macrophages and whether dapagliflozin (DAPA), an SGLT2i, protects against Ang II induced macrophage senescence by inhibiting NHE1 activation to alleviate Atherosclerosis (AS). After intervention with DAPA plus gavage or feeding them a high-fat diet, the mice's aortas were dissected, and oil red O staining was performed. Cell proliferation and toxicity detection, western blot, immunofluorescence, and β-galactosidase staining methods were adopted to detect cell activity, expressions of senescence-related genes, and number of senescent cells after different concentrations of Ang II or DAPA or plasmid NHE1 were treated with RAW264.7 cells. (1) The formation of AS plaques in ApoE -/- mice showed a downward trend under DAPA. (2) After the intervention of Ang II, the cell activity of RAW264.7 decreased, and the expression of senescent cells and related genes increased. (3) Under the Ang II condition, the expression of SGLT2 and NHE1 increased, and SGLT2, NHE1, and senescence-related genes decreased with the addition of DAPA. (4) The expression of NHE1, senescent cells and related genes decreased in RAW264.7 cells after DAPA treatment with plasmid NHE1 intervention. SGLT2i alleviates atherosclerosis by inhibiting NHE1 activation to protect against macrophage senescence induced by Ang II.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Combinatorial Chemistry & High Throughput Screening
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.