Abstract

Aircraft detection in synthetic aperture radar (SAR) images is a challenging task due to the discreteness of aircraft scattering characteristics, the diversity of aircraft size, and the interference of complex backgrounds. To address these problems, we propose a novel scattering feature relation enhancement network (SFRE-Net) in this paper. Firstly, a cascade transformer block (TRsB) structure is adopted to improve the integrity of aircraft detection results by modeling the correlation between feature points. Secondly, a feature-adaptive fusion pyramid structure (FAFP) is proposed to aggregate features of different levels and scales, enable the network to autonomously extract useful semantic information, and improve the multi-scale representation ability of the network. Thirdly, a context attention-enhancement module (CAEM) is designed to improve the positioning accuracy in complex backgrounds. Considering the discreteness of scattering characteristics, the module uses a dilated convolution pyramid structure to improve the receptive field and then captures the position of the aircraft target through the coordinate attention mechanism. Experiments on the Gaofen-3 dataset demonstrate the effectiveness of SFRE-Net with a precision rate of 94.4% and a recall rate of 94.5%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call