Abstract
Theory predicts that speciation rates should be accelerated in organisms undergoing sexual selection. In systems involving female choice, sexual selection acts directly on traits that may be important in prezygotic reproductive isolation, potentially fostering rapid divergence of such traits among allopatric populations. Despite the appeal of this concept, it has proven difficult to document. We provide genetic, behavioral, and simulation data illustrating that the striking and possibly recent divergence in traits of male behavior and morphology among populations of the jumping spider Habronattus pugillis can be attributed to sexual selection. We have found evidence for varying degrees of lower female response and offspring viability among some between-population crosses, consistent with the early stages of speciation. We have developed a gene-tree-based method for comparing phenotypic and genetic data sets to infer selection, and have found robust statistical evidence that directional selection has acted on male traits, by confirming that their rate of fixation exceeds that of neutral mitochondrial genes. Because these traits are apparent targets of female choice, the results indicate that sexual selection is driving divergence of phenotypes potentially crucial to the speciation process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.