Abstract
Since the initial discovery of double fertilization in angiosperms in 1898, a number of reports of double fertilization‐like events in the genus Ephedra have appeared. Until recently, convincing documentation of double fertilization in Ephedra had not been presented. In Ephedra nevadensis, following entry of a single binucleate sperm cell into the egg cell, one sperm nucleus migrates in a chalazal direction to fuse with the egg nucleus. Contemporaneous with this first fertilization event, the ventral canal nucleus regularly migrates from its initially apical position within the egg cell to a more central position within the egg cytoplasm, where it fuses with a second sperm nucleus. Based on quantitative microspectrofluorometric analysis, occasional supernumerary nuclei within the egg cell (derived by migration through pores in the cell walls between jacket cells and the central cell or egg cell) can be ruled out as participating in the second fertilization event. The evolutionary establishment of double fertilization in Ephedra (or its ancestors) was dependent on a number of specific developmental preconditions: 1) persistence of the ventral canal nucleus (which is degenerate in many groups of nonflowering seed plants) through the time of normal fertilization; 2) regular displacement of the ventral canal nucleus from its initially apical position within the egg cell to a position within the egg cytoplasm where fusion of the egg nucleus with the first sperm nucleus earlier occurred; 3) acquisition of egg‐like features by the ventral canal nucleus that allow it to attract and fuse with a sperm nucleus; and 4) consistent entry of a second sperm nucleus into the archegonial cavity to participate in a second fertilization event. Although it cannot be determined definitively whether double fertilization in Ephedra is evolutionarily homologous with double fertilization in flowering plants, comparative evidence is consistent with the hypothesis that double fertilization arose in a common ancestor of the Gnetales and angiosperms.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have