Abstract

Differences in reproductive demands between the sexes of dioecious plants could cause divergence in physiology between the sexes. We found that the reproductive effort of female Silene latifolia plants increased to more than twice that of male plants or female plants that were prevented from setting fruit by lack of pollination after 4 weeks of flowering. Whole-plant source/sink ratios of pollinated females were significantly lower than those of males or unpollinated females because of investment in fruit. We hypothesized that these differences in source/sink ratio between the sexes and within females, depending on pollination, would lead to differences in leaf photosynthetic rates. Within females, we found that photosynthetic capacity was consistent with measurement of whole-plant source/sink ratio. Females that were setting fruit had 30% higher light-saturated photosynthetic rates by 28 days after flowering than females that were not setting fruit. Males, however, had consistently higher photosynthetic rates than females from 10 days after flowering onwards. Males also had approximately twice the dark respiration rates of fruiting females. We found that female reproductive structures are longer-lived and contribute more carbon to their own support than male reproductive structures. Despite the higher rates of leaf dark respiration and lower calyx photosynthetic rates, males fix more carbon than do females. We conclude that females have a sink-regulated mechanism of photosynthesis that allows them to respond to variations in fruit set. This mechanism is not, however, sufficient to explain why male S. latifolia plants have higher rates of photosynthesis, higher source/sink ratios, and lower reproductive allocation, but fail to grow larger than female plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call