Abstract
Adult neurogenesis in rodents is modulated by dopaminergic signaling and inhibited by cocaine. However, the sex-specific role of dopamine D1 and D2 receptors (D1R, D2R) in the deleterious effect of cocaine on adult neurogenesis has not been described yet. Here, we explored sex differences in (a) cell proliferation (5'-bromo-2'-deoxyuridine [BrdU]), (b) neural precursor (nestin), (c) neuronal phenotype (BrdU/β3-tubulin), and (d) neuronal maturity (NeuN) in the subventricular zone (SVZ) of the lateral ventricles and striatum of mice with genetic deletion (D1-/- , D2-/- ) or pharmacological blockage (SCH23390: 0.1 mg/kg/day/5 days; Raclopride: 0.3 mg/kg/day/5 days) of D1R and D2R, and treated (10 mg/kg/day/5 days) and then challenged (5 mg/kg, 48 hr later) with cocaine. Results indicated that hyperactivity responses to cocaine were absent in D1-/- mice and reduced in SCH23390-treated mice. Activity responses to cocaine were reduced in D2-/- males, but absent in D2-/- females and increased in Raclopride-treated females. D1R deletion blocked the deleterious effect of cocaine on SVZ cell proliferation in males. Cocaine-exposed D1-/- males also had reduced neuronal phenotype of SVZ newborn cells and increased striatal neuronal maturity. D2-/- mice had lower proliferative and neural precursor responses. Cocaine in D2-/- females or coadministered with Raclopride in wild-type females improved SVZ cell proliferation, an effect that positively correlated with plasma brain-derived neurotrophic factor (BDNF) concentrations. In conclusion, the sex-specific D1R and D2R signaling on SVZ cell proliferation, neural progenitor and neuronal maturity is differentially perturbed by cocaine, and BDNF may be required to link D2R to neuroplasticity in cocaine addiction in females.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have