Abstract
Recent studies have described sex differences in the relative size of the hippocampus that are associated with sex differences in space use in birds and short-lived mammals. A correlation between spatial learning and increased hippocampal volume has also been demonstrated in food-caching animals. Such results suggest that sexually dimorphic spatial learning (sex differences in space use during the breeding season) and seasonal variations in food-caching behavior (spatial memory for cache locations) might correlate with morphological changes in the hippocampus of adult long-lived mammals. We used modern stereological techniques to examine the volume and neuron number of the structures forming the hippocampal complex (dentate gyrus, CA3, and CA1) of wild adult eastern gray squirrels (Sciurus carolinensis) throughout the year. We observed differences in brain size between samples collected at different times of the year (October, January, and June). Our analysis showed sex differences, but no seasonal variations, in the volume of CA1 stratum oriens and stratum radiatum. There were no sex differences or seasonal variations in the relative volume or the number of neurons of any other layer of the structures forming the hippocampal complex. These results confirm the existence of sex differences in the structure of the hippocampus; however, this sexual dimorphism does not vary seasonally in adulthood and is likely to result from developmental processes. These results do not support the hypothesis that seasonal variations in food-caching behavior might correlate with morphological changes, such as variations in volume or neuron number, in the hippocampal complex of adult long-lived mammals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.