Abstract
Whole-fish polychlorinated biphenyl (PCB) concentrations were determined for 25 female and 25 male burbot Lota lota from Lake Erie. Bioenergetics modeling was used to investigate whether the sex difference in growth rate resulted in a difference in gross growth efficiency (GGE) between the sexes. For ages 6-13 years, male burbot averaged 28 % greater PCB concentrations than female burbot. The sex difference in PCB concentrations widened for ages 14-17 years, with male burbot having, on average, 71 % greater PCB concentrations than female burbot. Bioenergetics modeling results showed that the faster growth rate exhibited by female burbot did not lead to greater GGE in female individuals of the younger burbot and that the faster growth by female fish led to female GGE being only 2 % greater than male GGE in older burbot. Although our bioenergetics modeling could not explain the observed sex difference in PCB concentrations, we concluded that a sex difference in GGE was the most plausible explanation for the sex difference in PCB concentrations of burbot ages 6-13 years. Not only are male fish likely to be more active than female fish, but the resting metabolic rate of male fish may be greater than that of female fish. We also concluded that the widening of the sex difference in PCB concentrations for the older burbot may be due to many of the older male burbot spending a substantial amount of time in the vicinity of mouths of rivers contaminated with PCBs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have