Abstract

Hypoxic-ischemic brain damage (HIBD) frequently induces cognitive impairments. Investigating the role of sevoflurane postconditioning (SPC) in HIBD, we conducted experiments involving HIBD modeling, SPC treatment, and interventions with the PERK inhibitor GSK2656157 or the PERK activator CCT020312, administered 30minutes before modeling, followed by SPC treatment. Behavioral testing using the Morris water maze test and Neurological Deficiency Scale (NDS) was conducted. Additionally, Nissl staining assessed hippocampal CA1 area neuronal density, TUNEL staining evaluated hippocampal CA1 area neuronal apoptosis, and Western blot determined hippocampal CA1 area protein levels, including Bax, Bcl-2, p-PERK/PERK, p-eIF2/eIF2, ATF4, CHOP, GRP78, Bax, and Bcl-2 protein levels. Following SPC treatment, HIBD rats exhibited improved spatial learning and memory abilities, reduced neuronal apoptosis, increased neuronal density in the hippocampal CA1 area, elevated Bcl-2 protein level, decreased Bax protein levels, and decreased levels of endoplasmic reticulum stress pathway related proteins (p-PERK/PERK, p-eIF2/eIF2, ATF4, CHOP and GRP78). Pre-modeling treatment with the PERK inhibitor treatment improved outcomes in HIBD rats. However, pre-modeling treatment with the PERK activator CCT020312 counteracted the protective effects of SPC against HIBD in rats. In conclusion, SPC alleviates neuronal apoptosis in the hippocampus CA1 area of HIBD rats by inhibiting the endoplasmic reticulum stress pathway PERK/ATF4/CHOP, thereby mitigating HIBD in rats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call