Abstract
Parkinson's disease (PD) is a neurodegenerative illness that progresses and is long-lasting. It becomes more difficult to talk, write, walk, and do other basic functions when the brain's dopamine-generating neurons are injured or killed. There is a gradual rise in the intensity of these symptoms over time. Using Parkinson's Telemonitoring Voice Data Set from UCI and deep neural networks, we provide a strategy for predicting the severity of Parkinson's disease in this research. An unprocessed speech recording contains a slew of unintelligible data that makes correct diagnosis difficult. Therefore, the raw signal data must be preprocessed using the signal error drop standardization while the features can be grouped by using the wavelet cleft fuzzy algorithm. Then the abnormal features can be selected by using the firming bacteria foraging algorithm for feature size decomposition process. Then classification was made using the deep brooke inception net classifier. The performances of the classifier are compared where the simulation results show that the proposed strategy accuracy in detecting severity of the Parkinson's disease is better than other conventional methods. The proposed DBIN model achieved better accuracy compared to other existing techniques. It is also found that the classification based on extracted voice abnormality data achieves better accuracy (99.8%) over PD prediction; hence it can be concluded as a better metric for severity prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.