Abstract

Visibility of nigrosome 1 in the substantia nigra (SN) is used as an MR imaging biomarker for Parkinson's disease. Because of lower susceptibility induced tissue contrast and SNR visualization of the SN pars compacta (SNPC) using conventional imaging technique in the clinical field strength (≤3T) has been limited. Susceptibility map-weighted imaging (SMWI) has been proposed to visualize SNPC at 3T. To better visualize nigrosome 1 and SN areas using SMWI, accurate estimation of the quantitative susceptibility mapping (QSM) map is essential. In SMWI processing, however, QSM processing time using conventional algorithms is the most time-consuming step and may limit clinical use. In this study, we introduce an efficient SMWI processing approach using the deep neural network (QSMnet). To improve the processing speed of SMWI while maintaining similar image quality to that obtained with the conventional method, QSMnet was applied to generate a susceptibility mask for SMWI processing. To conduct a deep learning-based image to image operation modified QSMnet was utilized. The network was trained with in vivo MR data from 57 healthy controls. To validate SMWI results from QSMnet, four datasets from healthy controls were used as the test datasets. As a preliminary attempt to explore the clinical applicability, Parkinson's disease patient data were additionally tested. The SWMI images generated by QSMnet and conventional model-based QSM outputs were compared. To validate SMWI results, region of interest (ROI) analysis was performed. The mean signal values at the nigrosome 1 and the surrounding regions were measured to calculate contrast-to-noise ratio (CNR). The experimental results confirmed that the proposed approach using QSMnet provided similar QSM and SMWI compared to that obtained with conventional iLSQR while the processing speed was much improved (5.4 times faster). The QSM results from QSMnet show similar tissue contrast with results from iLSQR. When compared, the absolute mean intensity difference between two methods near the nigrosome 1 was 0.015ppm. SMWI results using susceptibility masks from QSMnet demonstrated signal distribution and tissue contrast that was comparable with those results from the conventional iLSQR method. The absolute difference maps of SMWI were calculated to show the similarity between the two methods. The overall mean absolute difference value in the presented ROIs obtained from healthy controls (n=4) and a PD patient (n=1) were 2.31 and 1.81, respectively. Mean CNR values (10 ROIs; n=5; including both sides; 1.42 for QSMnet; 1.43 for iLSQR) between SN and nigrosome 1 in SMWI results obtained by ROI analysis were similar (P=0.724). In this study, we assessed an efficient approach for SMWI visualizing SN and nigrosome 1 on 3T. QSMnet provides a similar SMWI image to that obtained with the conventional iterative QSM algorithm and improves QSM processing speed by avoiding iterative computation. Since QSM is the most time-consuming step of SMWI processing, QSMnet can help to achieve a higher processing speed of SMWI. These results suggest that SMWI imaging with susceptibility masks using QSMnet is a more efficient approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call